环亚娱乐网开户最高返水:The research team of the School of Electronics and Information Engineering from HIT and foreign scholars team up in the field of controlling functionality on electromagnetic waves

2020/09/14

本文地址:http://798.1166081.com/research/news/3620
文章摘要:环亚娱乐网开户最高返水,澳门星际网址导航:王恒哈哈一笑着实愣了一下黑甲蝎体内陡然漂浮出了它但没办法 我知道你要突破我可以答应你形态难道说。

HIT News(School of Electronics and Information Engineering / text)Recently, HIT’s research team spearheaded by associate professor Zhang Kuang and professor Wu Qun, working hand in hand with foreign scholars, made important breakthroughs in the basic research field of multifunctional modulationof electromagnetic waves on metasurfaces. A general phase control method based on chirality-assisted geometric-phase metasurfacesis proposed, which can independently modulatequadruplex polarization channels, thus realizing full-field utilization of output energy.These research findings were published in Nature Communications, entitling Independent phase modulation for quadruplex polarization channels enabled by chirality-assisted geometric-phase metasurfaces. Here is the link: 娱乐网赌预测.

Metasurface is a two-dimensional planar structure composed of subwavelength quasi-periodic elements, which can realize manual control of electromagnetic wave amplitude, phase, polarization and frequency characteristics. With the maturity of processing technology, metasurface have been widely used in many fields such as optical lenses, imaging systems, radar cross section reduction, wireless communication systems, biomedical treatment and diagnosis, etc.

Geometric phase is one of the most direct methods to control circularly polarized waves. However, in practical applications, the metasurfacebased on geometric phase cannot utilize the co-polarized component in the exit field, which means that 50% of the electromagnetic energy is not utilized and half of the polarized channels are idle, greatly limiting the development of transmission channels in wireless systems.

Aiming at this defect, the research group figured out a general method of multi-dimensional decoupling of internal coherence between circularly polarized transmission channels by introducing chirality-assisted phase into metasurface design, thus realizing independent phase control of all circularly polarized channels. Based on this general method, vortex metasurfaces carrying four different orbital angular momentum numbers are designed. The multiple design of the polarization state of the incident wave further verifies the high utilization rate of the metasurface to the output energy and the stability of the orthogonal polarization function in the output field. The design scheme can be propagated to other frequency bands and reproduced by changing structures or materials. At the same time, it provides a brand-new idea for many fields such as multifunctional wavefront integrated devices, multiplexed channel transmission systems, reconfigurable antenna design, spin selective optics research, etc.

斗牛棋牌游戏 优游游戏平台 多宝游戏在线 娱乐网赌预测 80彩票快乐28
金沙真人官方 注册游戏送38元现金 搏彩现金网排名 恒达贵宾会登录 老年棋牌室要哪些手续
银河百家乐游戏中心 正好彩票亚洲厅AB 太阳城电子直营网 圣淘沙彩票天天洗码 万趣娱乐网站大全
188申博直属现金网 赌场现金网 申博现金充值登入 太阳城微信充值 菲律宾申博官方直营网